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MMSE-Based MDL Method for Accurate
Source Number Estimation
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Abstract—In civilian communication systems, the signature
sequence of the desired signal in training phase is known to the
receiver. In this letter, using the mutual information, we bridge
the probability density function and minimum mean-square error
(MMSE) between the observed data and training sequence of
the desired signal, and then employ the MMSE to construct a
minimum description length (MDL) criterion for accurate source
enumeration. Numerical results demonstrate that the proposed
method is superior to existing MDL methods in terms of detection
performance particularly for small number of snapshots and/or
source angular separation.

Index Terms—Eigenvalue decomposition, minimum description
length, sensor array processing, source number estimation.

I. INTRODUCTION

A RRAY processing has been widely used in civilian com-
munications. One of the features of these friendly com-

munications systems is that a priori knowledge, such as the sig-
nature sequence of the desired signal in training phase, is well
known to the receivers. To localize the sources by using a super-
resolution method and then suppress the interference sources
and noise, it is crucial to determine the number of sources first.
In the literature, source enumeration (SE) and direction finding
(DF) have been extensively studied, such as in [1]–[8]. To en-
hance the DF accuracy, a number of methods have been sug-
gested by using a priori knowledge of the signals. Neverthe-
less, works on improving the SE accuracy by exploiting a priori
knowledge of the signals are relatively few.

In this letter, an accurate minimum description length (MDL)
method is devised. By exploiting the mutual information, we
bridge the probability density function (PDF) and the minimum
mean-square error (MMSE) between the observed data and
training sequence of the desired signal, and then use the MMSE
to construct an MMSE-based MDL (MMDL) method for
source number estimation. Since the training sequence of the
desired signal is used to calculate the MMSEs, the proposed
method is significantly superior to the classical MDL method in
detection accuracy particularly when the number of snapshots
is small and/or the signal-to-noise ratio (SNR) is low.
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Fig. 1. Classical Wiener filter.

II. PROBLEM FORMULATION

Consider a uniform linear array (ULA) of sensors re-
ceiving narrow-band sources
from distinct directions , respectively. Assume that
the sources and array are in the same plane. In the sequel, the
th snapshot vector of the array output is written as

(1)

where contains the steering vec-
tors, is the source vector,

is the noise vector, and is the trans-
pose operation and denotes the number of snapshots. The
steering vector is given by

(2)

where denotes the wavelength, is the inter-sensor spacing,
and . The source waveforms
are assumed to be jointly stationary, statistically uncorrelated
and zero-mean complex Gaussian random processes. The sensor
noise is assumed to be an ergodic, zero-mean, spatially
and temporally white complex Gaussian process with covari-
ance matrix where is the identity matrix.
In addition, the noise is assumed to be uncorrelated with the
sources. Given the received data of the array and training se-
quence of the desired signal, the objective of this work is to ac-
curately estimate .

When and the training sequence of the desired signal,
denoted by , are available, we propose to use the clas-
sical Wiener filter (WF) to obtain the optimal estimate of the
desired signal in MMSE sense. The Wiener filtering problem
is depicted in Fig. 1 where is the -dimensional WF,

is the scalar estimate of and is the scalar error
signal. The classical Wiener filtering problem is to minimize the
mean-square error between the reference signal and its es-
timate

(3)
where is the Hermitian transpose and has the form:

(4)
with and . Here

and denote the expectation operator and complex con-
jugate, respectively. Consequently, the error signal is given by
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(5)

Denote the eigenvalue decomposition (EVD) of as

(6)

where , ,
are the eigenvalues and

are the corresponding eigenvectors. Without loss of
generality, suppose that the first signal is the desired signal and
we thereby obtain . Using (4)–(6), the MMSE,
denoted by , is

(7)

where is the power of and

(8)

Substituting (8) into (7) and noticing that
yields

(9)

where

(10)

is the MMSE when the number of sources is assumed to be
. In practical applications, however, only finite sample size,

say , can be accessed. Consequently, we can only obtain the
maximum likelihood (ML) estimates of , denoted
by , which are the eigen-pairs associated with the
sample covariance matrix .
In the sequel, the ML estimate of is calculated as

where and
. The problem here is to use

the MMSEs to accurately determine the number of incident
sources, including the desired and interference sources.

III. PROPOSED MMSE-BASED MDL ESTIMATOR

For a complex Gaussian process , its PDF is

(11)

where is the parameter
vector of the model. In the sequel, the mutual information be-
tween and is expressed as

(12)

where is the entropy of . For
the complex Gaussian processes and , their
corresponding entropies are, respectively, given by

(13)

(14)

Notice that the covariance matrix of
can be written as

(15)

The joint entropy of and is calculated as

(16)

Substituting (13), (14) and (16) into (12) yields

(17)

Let be the supposed source number. Substituting (10) into
(17), and considering that ,
we obtain

(18)

From [3], the Kullback–Leibler (K–L) divergence between two
PDFs can be defined as

(19)

Meanwhile, it is indicated in [9] that the mutual information and
the K–L divergence have the following equality

(20)

where and . It follows from (18)
and (20) that

(21)

with . On the other hand, as
can be considered to be statistically indepen-

dent complex Gaussian random vectors with mean zero and co-
variance matrix , we obtain for

(22)

where ,
and are the eigen-pairs of . For the finite sample size

, substituting the ML estimates of , and , i.e., ,

and , into (21) and (22), it follows that

(23)
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Here . As a result, substituting
this result into the MDL for encoding , given by

(24)

where denotes the MDL and equals the number of free

adjusted parameters in , and omitting the terms independent
of , we can rewrite the MDL as

(25)

It follows from (10) that the calculation of in-
volves the projection of the -dimensional signal sub-
space and largest eigenvalues

. In the sequel, the number of free pa-

rameters in may be reduced when (25) is used to calculate
the MDL. Note that can be regarded as the cross-cor-
relation between and the signal subspace component

, i.e., . As a
consequence, the model of the signal subspace components
is given as , which
can be assumed to be a statistically independent complex
Gaussian random vector with mean zero and covariance matrix

. Since the family of models is
necessarily described by , the number of free parameters
within this model equals that in , which is . Meanwhile,
considering that the number of the largest eigenvalues is and

is independent of , the total number of free parameters
is calculated as . Therefore, the number of sources
obtained by the MMSE-based MDL (MMDL) criterion, de-
noted by , is

(26)

where

(27)

Remark A: As indicated in (10), when there is no in-
cident signal, all the equal ; otherwise, all the
are smaller than . In the sequel, we use the to deter-
mine whether the sources exist or not. To this end, let

.
It follows from the asymptotic results of ML estimation [1],
that ,
and . In the sequel, it is easy to
verify that

(28)
Here we have used the fact that

. Noticing that
, we define an adaptive detector for

determining whether there exist the incident sources or not:

(29)

where , is a constant number,
and and denote the cases of source absence and source
presence, respectively. If is accepted, we conclude that there
is no incident source; otherwise is accepted, we then proceed

Fig. 2. Probability of correct detection versus number of snapshots. �� � � � �
�� � ��� �, ��� � � 	
, � � � and � � �; 500 trials.

to apply the proposed estimator in (26) to accurately obtain the
number of sources.

Remark B: Following the results of Wu et al. [2], a nonuni-
form noise MDL (NMDL) method [4] has been proposed to es-
timate the number of sources. The MDL of the NMDL method
is given as

(30)

where ,
are the so-called Gerschgorin radii which satisfy

, and the eigenvalues are ar-
ranged in a decreasing order as

. It is worth stressing that the MMDL method
does not use the ordered in the MMSE
calculation which is the essential difference between the pro-
posed method and the NMDL method although they take sim-
ilar formulations. Actually, the nonnegative term is
the well-known cross-spectral (CS) energy of the cross-spectral
metric (CSM) [10] for adaptive reduced-rank filtering. If the CS
energy terms are arranged in a decreasing order and then used
to calculate the MMSE, one may obtain the faster convergence
of the MMSE. This is why the CS energy can be used in CSM
to obtain the reduced rank of the observed space in adaptive re-
duced-rank filtering. However, when the CS energy is employed
to determine the number of sources, i.e., the rank of the principal
eigen-subspace, the CS energy terms should be calculated by di-
rectly using the eigen-pairs instead of the ordered Ger-
schgorin radii so that the CS energy terms are not in a decreasing
order. Otherwise, the estimated number of sources is the rank
of the CS subspace which is generally less than the true number
of sources. Therefore, the NMDL method tends to underesti-
mate the number of sources, particularly for large-scale systems
where both the number of sensors and number of sources are
large.

IV. NUMERICAL RESULTS

Consider first a ULA of six sensors with receiving
two equal-power sources. The empirical probabilities of cor-
rect detection versus number of snapshots are plotted in Fig. 2.
Note that a correct detection means that the source of interest as
well as the interference source are successfully detected. Since
the MMDL method can use the training sequence of the de-
sired signal, it is much more accurate than the classical MDL
(CMDL), NMDL and exponentially embedded families (EEF)
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Fig. 3. Probability of correct detection versus angular separation. �� � � � �
�� ����, ��� � � 	
, � � ��,� � � and � � ; 500 trials.

Fig. 4. Probability of correct detection versus number of sources in large-scale
system. ��� � �� 	
, � � ���,� � �� and � � ; 500 trials.

[5] methods. To obtain the same accuracy as the MMDL, the
NMDL, CMDL and EEF methods need around additional 150
samples. Fig. 3 shows the empirical results versus angular sepa-
ration. It is seen that the MMDL method is much more accurate
than the CMDL, NMDL and EEF methods for small angular
separation.

As noted in Remark B, the NMDL method generally
underestimates the number of sources because it requires
the ordered Gerschgorin radii, equivalently selecting the
CS subspace. This becomes more true for a large-scale
system. Consider now a ULA of 16 sensors which receives
five equal-power sources. Table I depicts the number of
sources detected by the four methods at ,

and
. It is seen that the MMDL scheme outperforms the EEF

and CMDL methods when . The NMDL method,
however, tends to underestimate the source number even at

. As the number of sources increases, the probability
of correct detection of the NMDL method converges to zero,
as shown in Fig. 4, thereby indicating that it can not provide a
reliable estimate of the number of sources in this large-scale
system.

TABLE I
NUMBER OF SOURCES DETECTED BY THE NMDL, CMDL, EEF AND

PROPOSED MMDL METHODS FOR 100 INDEPENDENT RUNS

V. CONCLUSION

An MMDL estimator for source number has been developed.
Using the training sequence of the desired signal, the MMDL
method can accurately calculate the MMSEs and thereby results
in a more accurate estimation of the source number than the
CMDL, NMDL and EEF methods. Meanwhile, we show that
the NMDL method tends to underestimate the source number in
large-scale systems due to the use of the ordered Gerschgorin
radii while the MMDL, CMDL and EEF methods retain their
insensitiveness.
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